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ABSTRACT

In an effort to ease staffing burdens and potentially
improve patient outcome in an intensive care unit
(ICU) environment, we are developing a real-time
system to accurately and efficiently diagnose
cardiopulmonary emergencies. The system is being
designed to utilize all relevant routinely-monitored
physiological data in order to automatically
diagnose potentially fatal events. The initial stage
of this project involved formulating the overall
system design and appropriate methods for real-time
data acquisition, data storage, data trending,
waveform analysis, and implementing diagnostic
rules. Initially, we defined a conceptual analysis
of the minimum physiologic data set, and the
monitoring time-frames (trends) which would be
required to diagnose cardiopulmonary emergencies.
Following that analysis, we used a fuzzy logic
diagnostic engine to analyze physiological data
during a simulated arrhythmic cardiac arrest (ACA)
in order to assess the validity of our diagnostic
methodology. We used rate, trend, and
morphologic data extracted from the following
signals: expired CO2 time-concentration curve
(capnogram), electrocardiogram, and arterial blood
pressure. The system performed well: The fuzzy
logic engine effectively diagnosed the likelihood of
ACA from the subtle hemodynamic trends which
preceded the complete arrest. As the clinical
picture worsened, the fuzzy logic-based system
accurately indicated the change in patient condition.
Termination of the simulated arrest was rapidly
detected by the diagnostic engine. In view of the
effectiveness of this fuzzy logic implementation, we
plan to develop additional fuzzy logic modules to
diagnose other cardiopulmonary emergencies.

INTRODUCTION

The morbidity of life threatening events may be
adversely affected by any delay in the institution of

corrective measures. Therefore, many patients are
intensively monitored in the ICU in order to
facilitate the rapid and early diagnosis of these
events.' Diagnostic delays may be the result of
insufficient nurse:patient staffing ratios, dependency
upon unsophisticated patient monitor diagnostic and
alarm algorithms, and the lack of the capability of
current monitoring systems to display the relevant
physiologic history.

Usually, critically ill patients are intensively
monitored, and it would be ideal if the available
physiological signals could be analyzed to provide
early detection of impending problems. However,
because of the nature and complexity of medical
diagnosis, accurate diagnoses are difficult to make
using typical computer models. Furthermore, the
simplistic signal processing algorithms in general
use do not actively exclude noise and other artifact
from signal averages, and frequent false alarms are
the result. Not only are displayed signal values
frequently incorrect, but the erroneous data cannot
be used to formulate accurate medical diagnoses.
Ideally, we should be able to make more reliable
diagnoses by simultaneously monitoring several
physiologic signals2 and implementing newer, more
powerfil algorithms such as neural networks and
fuzzy logic. An advanced comprehensive monitor
could be used as a tool to heighten the skills of
medical personnel, not merely act as an extension
of their skills.3

Some currently-used physiologic signal processing
techniques have been effective. For example,
several physiologic monitor manufacturers
successfully employ conventional signal processing
techniques to analyze the ECG. However, when
reliably-analyzed signals are not available, we have
successfully used neural networks to accurately
analyze real-time physiologic waveform data. The
neural network method of signal analysis can
identify and eliminate artifactual waveforms from
the time series, thereby improving the validity of
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the data stream and potentially improving the
diagnostic reliability of the system.3' Furthermore,
a characterization of the waveform morphology can
serve as a reliable input into an advanced
comprehensive monitoring system.

METHODS

Design Considerations
In order to create a comprehensive monitor capable
of performing reliable patient diagnoses, we have a
functional set of criteria that must be met by the
system. First and foremost, our system must be
able to physiologically adapt to individual patients
with unique conditions. We cannot realistically
expect to use some "normal" baseline as a relative
measure of a patient's condition. Therefore, the
monitor needs to be informed of the application
context (patient age, sex, and medical conditions).
Second, if we analyze the signals over multiple
time-frames, we can broaden the applicability of the
system to disorders which vary in their time course.
For example, a given drop in mean blood pressure
would have a different diagnostic meaning if the
decrease occurred over thirty seconds or thirty
minutes. Third, our monitor would need to
incorporate an "omniscient" awareness of all signals
available. This omniscience allows us to detect the
presence of all physiologic signals which are
available as inputs, intelligently select the optimal
signal sources by eliminating redundant or noisy
signals, and optimize the selection of appropriate
fuzzy rules in order to exclude the subsets of rules
which are dependant on unavailable data. Fourth,
performing multiple signal analysis allows us to
determine the monitoring context (for example,
detection of patient movement artifact). Knowledge
of this context then provides us the opportunity to
refine the diagnosis. For example, as a patient
moves about in bed, movement artifact may distort
the ECG waveform and generate an erroneous
single-signal diagnosis e.g. ventricular tachycardia.
However, simultaneous evaluation of the other
available signals (e.g. pulse oximeter
plethysmograph, arterial blood pressure waveform)
may detect the presence of a normal state. Finally,
the monitor needs to record the physiologic history
preceding a significant medical event. This
historical perspective allows for a more accurate
differential diagnosis and subsequently a more
effective treatment.

Before design began on the control system, we
looked at the dynamics of several diagnoses strictly
from a clinical point of view. We selected five
specific potentially fatal cardiopulmonary
emergencies to generate the system design. The
conditions were:

1. arrhythmic cardiac arrest (e.g. ventricular
fibrillation)
2. tension pneumothorax (air surrounding and
compressing a lung)
3. pericardial tamponade (fluid surrounding and
compressing the heart)
4. venous air embolism (air in the right ventricle
and pulmonary artery)
5. exsanguination (severe blood loss)

These five conditions were chosen because they are
important, testable, and maximally stress the
diagnostic limitations of the system. All of these
conditions result in a similar clinical picture of
cardiovascular depression which may be difficult to
discriminate between. Each of these events can be
difficult to diagnose (for a physician, let alone a
computer) without constantly and carefully watching
all of the physiologic trends. The varying time
course of these trends provides diagnostic clues.

Before design began on the control system, we
looked at the dynamics of each diagnosis strictly
from a clinical point of view. Each of the five
medical events were evaluated by examining all of
the information that would normally be
electronically acquired from each patient, and which
could contribute to the diagnosis. For example, a
blood pressure monitor can give us mean blood
pressure, systolic and diastolic pressure, and heart
rate. Other monitored signals include ECG, central
venous and pulmonary artery pressures, oxygen
saturation by pulse oximetry, airway pressure,
systemic arterial pressure, and capnography. Aside
from the instantaneous information, an accurate
diagnosis depends upon a closer examination of
trends which can be assembled from the data. This
includes the rate of change for all of the provided
information and a classification of each waveform's
morphology. For example, from our blood pressure
signal we could determine how fast the mean blood
pressure was changing (and the direction of
change), as well as a waveform classification into
categories such as normal, line flush, noise, or
damped. We then created a matrix that related the
five diagnoses to all of the processed data to help
us assess the necessity for each calculated signal
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value, and to investigate the rule structure required
to diagnose each event. We found that not all of
the information is necessary for each diagnosis and
each event can have several variations during its
onset depending on a patient or environmental
context.

Knowing what the system expectations were, we
evaluated several types of decision systems to find
the most effective and efficient. A traditional rule-
based expert system was ruled out because of the
known limitations of these systems (discussion
below), and the difficulty of changing the rule
structure to add additional diagnoses later on.6
Neural networks would appear to be ideal to
recognize these data patterns, however it is difficult
(if not impossible) to generate adequate examples to
train the network. Fuzzy logic on the other hand,
gives us the flexibility to meet all of our initial
objectives.7

Fuzzy logic is ideal for analyzing rapidly changing
variables and classifying data into more than one
category. For example, if we look at a classical
rule system, a rule could state that if a patient's
systolic blood pressure (BPS) is greater or equal to
100 mmHg, then we could classify this pressure as
"NORMAL". If BPS was less than 100 mmHg,
then we would classify it as "LOW." Now if a
person has a BPS of 99 mmHg, then according to
the strict rules this person would be classified with
"LOW" BPS. In reality, we see that this patient
has the characteristics of a pressure that is
somewhat low and somewhat normal. This will
help us to more accurately describe the true
medical condition. Rather than using a classical
ruled structure, we can implement a fuzzy logic-
based system in order to classify elements into more
than one category.7 This gives us a realistic
approach to making a medical diagnosis. With this
characterization tool, we can set up a fuzzy logic
system to reliably analyze various physiologic
trending patterns. We can classify all of our inputs
according to ranges from very low to very high and
then present our output in the form of a likelihood
for the event (e.g. not, somewhat, or very likely).
For example, if we wanted to detect ACA, one of
our fuizzy rules might look like this: "IF mean
blood pressure is Very Low and heart rate is Zero
and end tidal CO2 is Very Low THEN the
Likelihood of ACA is Very Likely." (Fig. I and
2) These rules are not as complex to derive because
we created our diagnostic matrix as the foundation
for these rules.

Experimental Diagnosis of Simulated ACA
A data file was hand-generated using anticipated
physiological values consistent with the
development ACA in an adult patient. The data set
was created for three monitors: ECG, systemic
arterial blood pressure, and the capnograph. In
addition to the signal amplitude and rate
information, a characterization of waveform
morphology was generated. ECG complexes were
described as "lethal" or "non-lethal". (Lethal ECG
complexes are defined for the purpose of this
experiment as complexes inconsistent with the
maintenance of life-sustaining cardiac output.)
Capnograms and blood pressure waveforms were
described as "normal morphology", "abnormal
morphology", or "absent".

The data set began with all signals in the normal
range, and progressed to a modest decrease in BPS
accompanied by the abrupt appearance of a lethal
ECG morphology. Exhaled CO2 concentration
decreased more slowly than BPS as might occur
with a mechanical ventilator set to deliver a low
minute ventilation. Blood pressure-derived heart
rate dropped almost instantaneously to a very low
value, whereas the ECG-derived heart rate changed
erratically to simulate the ECG monitor's
unpredictable analysis of heart rate during
ventricular fibrillation. Subsequently, all values
approached zero to simulate untreated ACA. After
maintaining all values near zero for several seconds,
all values were rapidly increased to their low-
normal range.

The ACA diagnostic capability of the fuzzy logic
rule set was evaluated by reading the prepared data
set. The data set was read into a custom Visual
Basic program (version 3.0, Microsoft Corp.,
Redmond, WA) which used a dynamic linked
library fuzzy logic tool (CubiCalc RTC version
1.20, Hyperlogic Corp., Escondido, CA) and
displayed a graphical representation of the
likelihood of ACA over time. The trend of C02
concentration, BPS, and ECG-derived heart rate
were similarly graphed. The relationship of the
likelihood of ACA ("not likely", "somewhat likely",
or "very likely") was assessed relative to the onset
and amount of change of the three input variables.

RESULTS

Detection of the onset of ACA, evidenced by a
transition from "not likely" to a high degree of
"somewhat likely", occurred immediately after the
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onset of the lethal ECG complex and hypotension.
Progression to "very likely" occurred just prior to
the nadir of all of the signals and remained in that
state until restoration of the circulation. The
transition back to a state of "not likely" occurred
rapidly: ACA "not likely" was diagnosed as soon as
the physiological signals started to normalize. Of
note was the rapid detection of the onset of ACA,
and the smooth transition of the likelihood indicator
throughout the event. The performance of the
experimental system exceeded our expectations,
mainly because of the rapid recognition capabilities.

CONCLUSION

We have formulated the architecture of a prototype
comprehensive cardiopulmonary monitoring system.
The system utilizes all available relevant signals
from routinely-monitored ICU patients to diagnose
and trend the onset and resolution of adverse
cardiopulmonary events. Raw signals may be
processed by conventional or neural network
algorithms to provide reliable data for analyses by
fuzzy logic rules. The performance and capabilities
of neural network physiologic waveform analysis
was evaluated previously', and now the capabilities
of utilizing fuzzy logic to analyze this preprocessed
data has been studied.

In view of the performance of the ACA-detection
module, we plan to continue our development of
additional diagnostic modules and perform invivo
studies to further evaluate the concepts proposed
here. Initial invivo development will require
refining the data trending structures, formulating
additional fuzzy rules, and evaluating performance
of the system on real data. Eventually, system

development will require the long-term collection of
ICU patient data in order to capture and analyze
adverse events.
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